
Chafik NOUIRA, LesFurets.com
tp-bigdata@lesfurets.com

1

Plan

1. Intro
2. Data storage
3. Use case
4. Cypher
5. Functions & Procedures
6. Neo4j @LesFurets

2

Intro

● NoSQL Graph Database Management System (DBMS), developed by Neo
Technology, Inc.

● Developed in Java, provides cross platform accessibility

● Adheres to ACID properties

● Flexible schema

● Accessible from different software using Cypher Query Language(CQL)
through HTTP

3

Plan

1. Intro

2. Data storage
● Node
● Relationship
● Label

3. Use case
4. Cypher
5. Functions & Procedures
6. Neo4j @LesFurets

4

● Basic building block

● Contains properties stored as key-value pairs

● Numeric(integer, float), String, Boolean, List

● Nodes cannot contain Nodes

● Storage capacity : No limitation

Node

5

● Another basic building block, also known as egde
● Contains properties also stored as key-value pairs
● Used to connect two nodes
● Always directed from one node to another
● Storage capacity : No limitation

Relationship

6

● A name given to a set of nodes or relationships

● Can be considered as a node or relationship’s type

● Storage capacity : 64k different labels (16M in Entreprise Edition)

● :NodeLabel (No limitation of labels per node)

● :RELATIONSHIP_LABEL (Only one label per relationship)

Label

7

Plan

1. Intro
2. Data storage

3. Use case
4. Cypher
5. Functions & Procedures
6. Neo4j @LesFurets

8

Name Country Hair University

Andrei Romania Black Paris Diderot

Alexandre Canada Brown Université de Montréal

Geoffrey France Blond Paris Diderot

Chafik Tunisia Black UPMC

Jonathan France Black UPMC

Student

9

ID Name

1 Romania

2 Canada

3 France

4 Tunisia

Country

10

ID Name Capital_city

1 Romania Bucharest

2 Canada Ottawa

3 France Paris

4 Tunisia Tunis

Country

11

Name Country Hair University

Andrei 1 Black Paris Diderot

Alexandre 2 Brown Université de Montréal

Geoffrey 3 Blond Paris Diderot

Chafik 4 Black UPMC

Jonathan 3 Black UPMC

Student

12

ID Name

1 Paris Diderot

2 Université de Montréal

3 UPMC

University

13

Name Country Hair University

Andrei 1 Black 1

Alexandre 2 Brown 2

Geoffrey 3 Blond 1

Chafik 4 Black 3

Jonathan 3 Black 3

Student

14

Name Country Hair University

Andrei 1 Black 1

Alexandre 2 Brown 2

Geoffrey 3 Blond 1

Chafik 4 Black 3

Jonathan 3 Black 3

ID Name Capital city

1 Romania Bucharest

2 Canada Ottawa

3 France Paris

4 Tunisia Tunis

ID Name

1 Paris Diderot

2 Université de Montréal

3 UPMC

Student

Country
University

15

SELECT
s.name, c.name, u.name

FROM
student s
LEFT JOIN country c ON c.ID = s.country
LEFT JOIN university u ON u.ID = s.university

WHERE
u.name = 'UPMC'

Requête SQL

16

Graph

University

Student

Country
17

MATCH
(u:University{name:"UPMC"})<-[:STUDIED_AT]-(s:Student)-[:FROM]->(c:Country)

RETURN
s.name AS Student, c.name AS Country, u.name AS University

Requête CYPHER

18

Plan

1. Intro
2. Data storage

3. Use case
4. Cypher

● Updating clauses
● Reading clauses
● Sub-queries

5. Functions & Procedures
6. Neo4j @LesFurets

19

● Declarative graph query language

● Borrows its structure from SQL

● Expressing what to retrieve from graph, not how to retrieve it

● Reads, writes and updates

● Query optimization

● MATCH <pattern> WHERE <condition> RETURN <expression>

Cypher

20

Graph representation

:FROM

France

21

Cédric

Cypher – Syntax

:FROM

CREATE (:Student {name : "Cédric"}) - [:FROM]-> (:Country {name : "France"})

NODE NODERELATIONSHIP

LABEL PROPERTY LABEL PROPERTYClause

22

● CREATE : creates nodes, relationships and patterns

CREATE (s:Student {name : "Andrei"})

Updating clauses

23

● MERGE : merges nodes, relationships and patterns.
Either a pattern exists or it needs to be created.

MERGE (s:Student {name : "Andrei", hair : "Black"})

Updating clauses

24

MERGE (s:Student {name : "Andrei"})
ON CREATE SET s.hair = "Black"
ON MATCH SET s.hair = "Black"

Updating clauses

25

MERGE
(s:Student {name : "Andrei"})-[:FROM]->(c:Country {name : "Romania"})

Updating clauses

26

MERGE (s:Student {name : "Andrei"})
ON CREATE SET s.hair = "Black"
ON MATCH SET s.hair = "Black"

MERGE (s)-[r:FROM]->(c:Country {name: "Romania"})
RETURN s, r, c

Updating clauses

27

● MERGE : when using constraints, the first example will work just fine.

CREATE CONSTRAINT ON (s:Student) ASSERT s.name IS UNIQUE

● SET : Adds or updates properties (on nodes and relationships) and labels (only on
nodes)
Used with MATCH or MERGE

Example
MATCH (s:Student {name : "Andrei"})

SET s:Person
SET s.birthYear = 1990

Updating clauses

28

● DELETE : Delete nodes and relationships
When deleting a node, use DETACH to delete its relationships first.

Example
MATCH (s:Student {name : "Andrei"})
DETACH DELETE s

● REMOVE : Removes properties from a node or a relationship.

Example
MATCH (s:Student {name : "Andrei"})
REMOVE s.birthYear

Updating clauses

29

● MATCH : simplest way to get data from the graph

MATCH (s:Student)
RETURN s.name AS Name, s.hair AS Hair

● WHERE : Filter results using conditions

MATCH (s:Student)
WHERE s.name = "Andrei"
RETURN s.hair AS Hair

Reading clauses

MATCH (s:Student {name : "Andrei"})
RETURN s.hair AS Hair

30

● RETURN : Results to be returned. Can be used with SKIP/LIMIT
and ORDER BY

MATCH (s:Student)
RETURN s.name, s.birthDate
ORDER BY s.birthDate DESC
LIMIT 10

Reading clauses

31

● Returned data can be : nodes, relationships, properties and patterns

MATCH p = (:Student)-[:FROM]->(:Country)
RETURN p

Reading clauses

32

● WITH : allows query parts to be chained together by passing the results from
one to another.
Can be used with WHERE, ORDER BY, and SKIP/LIMIT.

MATCH (u:University)-[:STUDIED_AT]-(s:Student)-[:FROM]-(c:Country)
WITH u, count(DISTINCT c) AS nbCountries
WHERE nbCountries > 1
RETURN u.name AS University, nbCountries
ORDER BY nbCountries DESC, University

Sub-queries

33

● UNWIND : expands a list into a sequence of rows.

UNWIND [1, 1, 2, 3] AS x
RETURN DISTINCT x

● UNION : used to combine the results of multiple queries.

MATCH (s:Student)
RETURN s.name AS name
UNION
MATCH (c:Country)
RETURN c.capitalCity AS name

Other clauses

34

● FOREACH : used to update data within a list.

MATCH p = (s:Student)--(u:University)
FOREACH (n IN nodes(p) | SET n.marked = TRUE)

● Other clauses exist
see https://neo4j.com/docs/developer-manual/current/cypher/clauses/

Other clauses

35

https://neo4j.com/docs/developer-manual/current/cypher/clauses/

Plan

1. Intro
2. Data storage
3. Use case
4. Cypher

5. Functions & Procedures
6. Neo4j @LesFurets

36

● Predicate, scalar, aggregating, list, mathematical, string and spatial.

MATCH (c:Country)
RETURN count(c) AS nbCountries

● APOC : Awesome Procedures On Cypher
○ Procedure

CALL apoc.algo.wcc() YIELD nodeIds, stats
RETURN nodeIds, stats

○ Function
RETURN apoc.version()

Functions & Procedures

37

● APOC : Awesome Procedures On Cypher

https://github.com/neo4j-contrib/neo4j-apoc-procedures

● Neo4j Graph Algorithms

https://github.com/neo4j-contrib/neo4j-graph-algorithms

Functions & Procedures

38

https://github.com/neo4j-contrib/neo4j-apoc-procedures
https://github.com/neo4j-contrib/neo4j-graph-algorithms

Plan

1. Intro
2. Data storage
3. Use case
4. Cypher
5. Functions & Procedures

6. Neo4j @LesFurets

39

● How to identify a user and rebuild his journey on our website LesFurets.com ?

Problematic

40

● Form to fill out

● Non-centralized data (Forms & Tracking)

● Unauthenticated users

● Cookie for each web browser

● Invalid email addresses

Context

41

UserUid

Data model

VisitUid

OffreUid

Natural
key

1

1..*

1

1..*

1..*

0,1

Cookie

Session

Form

User’s unique
identifier 42

Example
Cookie

Session

Form

Natural key

43

44

45

46

// Students nodes
CREATE (andrei:Student {name : "Andrei", hair : "Black"})
CREATE (alexandre:Student {name : "Alexandre", hair : "Brown"})
CREATE (geoffrey:Student {name : "Geoffrey", hair : "Blond"})
CREATE (chafik:Student {name : "Chafik", hair : "Black"})
CREATE (jonathan:Student {name : "Jonathan", hair : "Black"})

// Countries nodes
CREATE (romania:Country {name : "Romania", capitalCity : "Bucharest"})
CREATE (canada:Country {name : "Canada", capitalCity : "Ottawa"})
CREATE (france:Country {name : "France", capitalCity : "Paris"})
CREATE (tunisia:Country {name : "Tunisia", capitalCity : "Tunis"})

// Universities nodes
CREATE (diderot:University {name : "Paris Diderot"})
CREATE (montreal:University {name : "Université de Montréal"})
CREATE (upmc:University {name : "UPMC"})

// Student --> Country Relationships
CREATE (andrei)-[:FROM]->(romania)
CREATE (alexandre)-[:FROM]->(canada)
CREATE (geoffrey)-[:FROM]->(france)
CREATE (chafik)-[:FROM]->(tunisia)
CREATE (jonathan)-[:FROM]->(france)

// Student --> University Relationships
CREATE (andrei)-[:STUDIED_AT]->(diderot)
CREATE (alexandre)-[:STUDIED_AT]->(montreal)
CREATE (geoffrey)-[:STUDIED_AT]->(diderot)
CREATE (chafik)-[:STUDIED_AT]->(upmc)
CREATE (jonathan)-[:STUDIED_AT]->(upmc)

Students database

47

